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The Paleozoic Variscan orogeny was a large-scale collisional event involving amalgamation of multiple con-
tinents and micro-continents. Existing data, suggests oroclinal buckling of an originally near-linear conver-
gent margin during the last stages of Variscan deformation in the late Paleozoic. Closure of the Rheic Ocean
resulted in E–W shortening (present-day coordinates) in the Carboniferous, producing a near linear N–S
trending, east-verging belt. Subsequent N–S shortening near the Carb-Permian boundary resulted in oroclinal
buckling. This late-stage orogenic event remains an enigmatic part of final Pangea amalgamation.
The present-day arc curvature of the Variscan has inspired many tectonic models, with little agreement be-
tween them. While there is general consensus that two separate phases of deformation occurred, various
models consider that curvature was caused by: dextral transpression around a Gondwana indentor;
strike-slip wrench tectonics; or a change in tectonic transport direction due to changing stress fields. More
recent models explain the curvature as an orocline, with potentially two opposite-facing bends, caused by
secondary rotations. Deciphering the kinematic history of curved orogens is difficult, and requires establish-
ment of two deformation phases: an initial compressive phase that forms a relatively linear belt, and a second
phase that causes vertical-axis rotation of the orogenic limbs. Historically the most robust technique to accu-
rately quantify vertical axis-rotation in curved orogens is paleomagnetic analysis, but recently other types of
data, including fracture, geochemical, petrologic, paleo-current and calcite twin data, have been used to cor-
roborate secondary buckling. A review of existing and new Variscan data from Iberia is presented that argues
for secondary buckling of an originally linear orogenic system.
Together, these data constrain oroclinal buckling of the Cantabrian Orocline to have occurred in about 10 Ma
during the latest Carboniferous, which agrees well with recent geodynamical models and structural data that
relate oroclinal buckling with lithospheric delamination in the Variscan.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Folded and distorted strata have long fascinated artists and ob-
servers of the natural world. Since at least as far back as the time of
Leonardo da Vinci in the late 1400s, natural scientists have
questioned the meaning of warped and slanted rock layers (Jones,
1962; Rosenberg, 2001). In da Vinci's sketch of ‘crumbled strata’ his
inference of dynamic processes that stressed horizontally layered
rock into a distorted shape is clear, and is argued as a foundation to
his postulations on geologic facies and relative time (Berger, 2005).

In the 1600s Nicholas Steno returned to the significance of folded
strata for understanding the Earth when he used field observations of
distorted strata to define his law of horizontality published in
Dissertationis Prodromus (Brookfield, 2004; Rosenberg, 2006; Steno,
1669). Later in the 1700s, observations by fellow renaissance geologist
Sir James Hall established that folded strata are a direct consequence
of deformation in the Earth's crust (Carey, 1955). Finally, in the late
1800s and early 1900s it was geologists like Eduard Suess (1909),
Émile Argand (1924), and William Hobbs (1914) who acknowledged
folded and distorted layers in plan/map-view at the scale of entire oro-
genic systems, not just within, or between individual outcrops (Hobbs,
1914). This expansion of observations ultimately led Carey (1955,
1958), the true father of curved orogenic systems, to the realization
that folds happen across at least 12 orders of magnitude — from the
micro- to the crustal-scale. It is these crustal-scale folds that remain
one of the largest and least understood structures on Earth, with one
of the most fundamental remaining questions being — if the crust
folds, how deep does deformation penetrate?

Unquestionably, one of the most spectacular crustal-scale folds on
Earth today is found in the Western Europe Variscan Belt (Fig. 1). The
Western Europe Variscan Belt is a complex continental-scale orogen
(1000 km wide and 8000 km long) that formed through a series of
protracted tectonic episodes from initial convergence at about
420 Ma to final collision at about 310 Ma (e.g., Franke et al., 2005;
Martínez Catalán et al., 2007). Broadly speaking, the Variscan orogen
represents the closing of at least two – and possibly four – oceans be-
tween Laurentia, Baltica, and Gondwana, and intervening micro-
continents during the Paleozoic amalgamation of the Pangea super-
continent (e.g., Hatcher, 1989, 2002; Martínez Catalán et al., 1997,
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Fig. 1. Simplified tectonostratigraphic zonation of the Variscan orogen in southwestern Eu
location of the central Cantabrian–Asturian Arc (labeled as CAA). Inset box represents area
2007; Matte, 2001; van Staal et al., 1998; Winchester et al., 2002).
Late, to post-orogenic modification of the Western Europe Variscan
Belt produced its characteristic sinuous shape that today traces at
least one, and possibly four (Martínez-Catalán, 2011, 2012; Shaw et
al., 2012a) complete arcs from Poland to Brittany, and then across
the Bay of Biscay (Cantabrian Sea) into Iberia, where they are truncat-
ed by the Betic Alpine front in southern Spain (Fig. 1).

This review paper describes the collection of observations that led
to the current orogenic model for the most thoroughly established
orocline in the Western Europe Variscan Belt — the Cantabrian
Orocline (Fig. 2). Herein, the Cantabrian Orocline is roughly equiva-
lent to the classically defined Ibero-Armorican Arc (e.g., Brun and
Burg, 1982; Lefort, 1979; Perroud and Bonhommet, 1981), and is
characterized by a curved structural trend that traces an arc from Brit-
tany across the Bay of Biscay into western Iberia. Recently published
data and paleogeographic models from Iberia indicate that within
the classic Ibero-Armorican Arc, whose original boundary was trun-
cated in southern Iberia by the Alpine Front (Fig. 1), exists a coupled
orocline system with two linked bends — the Cantabrian Orocline to
the north and the Central Iberian Orocline to the south (Martínez-
Catalán, 2011, 2012; Shaw et al., 2012a). This review focuses on the
Cantabrian Orocline, which is better studied and exposed than the
Central Iberian Orocline. Development of the Cantabrian Orocline re-
quires the formation of a roughly linear orogenic belt during early
Variscan closure of the Rheic Ocean, which was subsequently bent
in plan-view into an orocline during late stages of Pangea amalgam-
ation. Importantly, this model predicts that to accommodate oroclinal
buckling at this scale, involvement of the entire lithosphere is
required (Gutiérrez-Alonso et al., 2004, 2012). The resulting tectonic
story is based on kinematic and geologic observations grounded in
structural, strain, sedimentologic, geochronologic, geochemical, and
paleomagnetic data from across Iberia.

2. Opening of the Rheic

The tectonic history of the Western Europe Variscan Belt begins
with the development of the Late Cambrian to Early Ordovician
northern Gondwanan margin (Fig. 3), which preserves passive mar-
gin sedimentary, intrusive and volcanic sequences that record the
assif
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opening of the Rheic Ocean (e.g. Cocks and Torsvik, 2002, 2005;
McKerrow and Scotese, 1990). There is general agreement that the
Rheic Ocean was the result of rifting and subsequent northward
drift of a series of peri-Gondwanan terranes (e.g., Avalonia, Carolinia
and Ganderia) from the northern margin of a southern hemisphere
Gondwana (Fig. 3) (Cocks and Fortey, 1990; Cocks and Torsvik,
2002, 2005; Linnemann et al., 2012; McKerrow and Scotese, 1990;
Stampfli and Borel, 2002; von Raumer et al., 2003); however, there
remains uncertainty as to what initiated rifting (e.g., Crowley et al.,
2000; Díez Fernández et al., 2012; Fuenlabrada et al., in press;
Matte, 2001; Murphy et al., 2006; Stampfli and Borel, 2002; van
Staal et al., 1998; von Raumer et al., 2002). In NW Iberia the sedimen-
tary and igneous rock succession of the Late Cambrian to Early Ordo-
vician is well preserved and provides one of the most complete
records of the Rheic Ocean rift-to-drift history, as well as its closure
during the peak of Variscan orogeny in the Late Devonian and Early
Carboniferous (e.g., Aramburu et al., 2002; Gibbons and Moreno,
2002; Keller et al., 2007, 2008; Vera, 2004).

Prior to the opening of the Rheic Ocean, the peri-Gondwana ter-
ranes (e.g., Avalonia, Carolinia, Armorica and Iberia) record a
Neoproterozoic history of protracted (ca. 750–550 Ma) low-grade
tectonothermal evolution caused by the northern Gondwanan
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Cadomian subduction-related orogeny (Cuesta et al., 2004; Díaz
García, 2006; Fernández-Suárez et al., 1998; Gutiérrez-Alonso, 1996;
Gutiérrez-Alonso and Fernández-Suárez, 1996; Gutiérrez-Alonso, et
al., 2004). The Cadomian orogeny in northern Gondwana is thought
to have developed along a Cordilleran-style convergent plate bound-
ary, characterized by a landward-dipping subduction zone and a con-
tinental magmatic arc (e.g., Cogné, 1990; Linnemann et al., 2007,
2012). The Cadomian orogen in north Gondwana was followed by
lithospheric thinning during the Late Cambrian to Early Ordovician
(Díaz García, 2002; Díez Fernández et al., 2011, 2012; Díez Montes,
2006; Martínez Catalán et al., 1992; Pérez-Estaún et al., 1991a;
Valverde Vaquero et al., 2005), and ultimately to the formation of
the Rheic Ocean.
Existing lithostratigraphic and paleontological data indicate that
much of the Western Europe Variscan Belt was located adjacent to
North Africa during the early Paleozoic evolution of the Rheic
(e.g. Martínez-Catalán et al., 2004; Robardet, 2002). The age and
origin of the basement to these sequences is poorly understood, and
thus a definitive paleogeography has been elusive (Robardet, 2003).
Early studies suggested that the basement of the Western Europe
Variscan Belt was part of the Paleoproterozoic ca. 2.0 Ga West African
craton (Guerrot et al., 1989; Samson and D'Lemos, 1998). However,
more recent detrital zircon studies have pointed to other potential
basement sources in NW Iberia based on age populations of
Mesoproterozoic (ca. 1.1–1.4 Ga), and Archean age (e.g., Díez
Fernández et al., 2010; Fernández-Suárez et al., 2000, 2002a,b;
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Gutiérrez-Alonso et al., 2003; Pereira et al., 2012). Detrital zircon data
from Neoproterozoic metasedimentary rocks of the Ossa–Morena
zone contain zircon populations that are typical of the West African
craton (Fernández-Suárez et al., 2002a; Gutiérrez-Alonso et al.,
2003; Pereira et al., 2011) and directly correlate with those found in
the North Armorican Massif (Samson et al., 2005). Conversely, the
presence of ca. 1.0 Ga detrital zircons in Neoproterozoic clastic
rocks suggested an Amazonian source for at least some of the detritus
(Fernández-Suárez et al., 2000; Gutiérrez-Alonso et al., 2003; Pereira
et al., 2012), although a recently discovered potential source of ca.
1.0 Ga zircons exists in the Central Sahara (de Wit et al., 2005;
Meinhold et al., 2011, 2012). Additionally, Sm–Nd isotope data for
Neoproterozoic sedimentary rocks (Fernández-Suárez et al., 1998;
Ugidos et al., 2003) yield εNd values between −2.2 and −0.4, which
are consistent with a source outside the typical range of time-
equivalent sedimentary rocks from theWest African craton (e.g. Abati
et al., 2010; Morag et al., 2011; Potrel et al., 1998). Recent findings of
ca 1.0 Ga zircons and source rocks in the southern Sahara (Avigad et
al., 2003, 2012; Meinhold et al., 2011) provide new possibilities for
the reconstruction of the paleoposition of NW Iberia both in
Neoproterozoic and early Paleozoic times, though this controversy is
not yet resolved.

Moving into the early Paleozoic, the Cambrian to Devonian detrital
zircons and stratigraphy in NW Iberia suggests a North African con-
nection (Díez Fernández et al., 2010; Pastor-Galán et al., 2012c;
Shaw et al., 2012b). These associations include the Armorican Quartz-
ite, Late Ordovician glaciomarine diamictites, and the presence of
shallow-marine Tethyan (African proximity) fossils (Robardet and
Gutiérrez-Marco, 1990). Sm–Nd data for the Cambrian sedimentary
rocks (Ugidos et al., 2003) yield more negative εNd values, interpreted
to reflect a peri-West African source; whereas detrital zircons in the
Ordovician, Silurian and Devonian sedimentary rocks yield mixed
populations (Fernández-Suárez et al., 2002b; Martínez-Catalán et
al., 2004; Pastor-Galán et al., 2012a; Shaw et al., 2012b) with both
West African and an increasing Mesoproterozoic signatures of ambig-
uous origin. These various data suggest that, in contrast to the
Neoproterozoic sources, Palaeozoic detritus within NW Iberia have
mixed Mesoproterozoic and West African components. This possible
switch in source region has been linked to portions of the Western
Europe Variscan Belt being transferred along the Gondwanan margin
by the Precambrian–Cambrian boundary (Fernández-Suárez et al.,
2002b; Gutiérrez-Alonso et al., 2003).

The protracted and complex tectonic evolution of the peri-
Gondwana terranes likely controlled the site of initial rifting and sub-
sequent development of the Rheic Ocean (Murphy et al., 2006). Rift
initiation began with the ca. 500–490 Ma separation of Avalonia
and Carolinia from Gondwana, which left Cadomian-type terranes
(e.g., Iberia) along the northern Gondwanan margin (Fig. 3) (e.g.,
Cocks and Torsvik, 2002, 2005, 2011). By ca. 460 Ma Avalonia and
Carolinia had drifted about 2000 km north of this margin (Fig. 3a)
(Gómez Barreiro et al., 2010; Winchester et al., 2002). The timing of
the Rheic rift-to-drift transition is constrained by Lower Ordovician
(Tremadoc–Arenigian) volcanism present throughout NW Iberia
(Castro et al., 1999, 2003; Díez Montes, 2006; Díez Montes et al.,
2010; Gutiérrez-Alonso et al., 2007; Montero et al., 2007, 2009;
Talavera et al., 2012; Valverde Vaquero et al., 2005; Valverde-
Vaquero and Dunning, 2000). The northern portion of the Central
Iberian Zone preserves the most volumetrically significant Early
Ordovician volcanic sequence in NW Iberia, including the “Ollo de
Sapo” belt where voluminous felsic volcanics and related intrusions
outcrop along a continuous NW- to N-trending belt (Castro et al.,
1999, 2003; Díez Montes, 2006; Valverde Vaquero et al., 2005;
Valverde-Vaquero and Dunning, 2000). Coeval with Ollo de Sapo
magmatism, ca. 4500 m of strata accumulated in sub-basins and
troughs parallel to the northern Gondwanan margin, marking an in-
crease in subsidence related to tectonic extension and the rift-drift
transition stage of Rheic Ocean development (Aramburu et al.,
1992; Martínez Catalán et al., 1992; Pérez-Estaún et al., 1990). This
extensional event is coeval with genesis of Lower Ordovician granit-
oid and volcanic rocks interpreted as intra-crustal melts generated
in response to steep geothermal gradients associated with rifting
(Díez Montes, 2006; Gallastegui et al., 1987; Pin et al., 1992; Ribeiro
and Floor, 1987; Rubio-Ordoñez et al., 2012; Valverde Vaquero et
al., 2005). Although volcanic activity continued into the Upper Ordo-
vician, the resulting volcanic rocks are scarce and only locally repre-
sented (Corretgé and Suárez, 1990; Gallastegui et al., 1992; Heinz et
al., 1985).

Some models for the rift-to-drift transition (e.g., Díez Fernández et
al., 2012; van Staal et al., 1998) imply that the Rheic Ocean initiated as
a backarc basin, but evidence for arc-related rocks coeval with rifting
along the northern Gondwanan margin is equivocal. Alternatively,
since the opening of the Rheic Ocean is coeval with a polarity flip
along the northern Iapetus margin and the onset of northwesterly di-
rected subduction and ridge–trench collision (e.g., Stampfli and Borel,
2002; van Staal et al., 1998), the portion of the Avalonian–Carolinian
microplate captured from Gondwana during the Early Cambrian may
have been pulled from Gondwana by slab pull forces (Murphy et al.,
2006) in a manner analogous to the opening of the Neotethys in the
Mesozoic (Stampfli and Borel, 2002). The slab pull model requires the
absence of a spreading ridge between Avalonia–Carolinia and the Lau-
rentian margin and, given the moderately rapid northerly component
of motion of Avalonia between 480 and 460 Ma (8 cm/yr; Hamilton
and Murphy, 2004), the presence of an east–west striking spreading
ridge in the Rheic Ocean (Fig. 3a).

The Schistose Galicia–Trás-os-Montes Domain (Fig. 2a) (Farias et
al., 1987; Marcos et al., 2002; Martínez-Catalán et al., 1997) rests tec-
tonically above the Central Iberian Zone and consists of a thick
siliciclastic sequence with interbedded volcanic rocks. Some of the
volcanic rocks yield Lower Ordovician (475±2, Valverde Vaquero et
al., 2005) ages that are interpreted as the most outboard parts of
the passive margin sedimentary wedge of Gondwana. Structurally
above the sedimentary sequence, the Schistose Galicia–Trás-os-
Montes Domain contains an allochthonous complex, which has a low-
ermost unit of continental, Gondwana basement affinity (the Basal
Units) (Martínez-Catalán et al., 1997). This unit is structurally over-
lain by two ophiolitic units of Early Ordovician and Devonian age
that are interpreted to be the remnants of the Rheic Ocean or subsid-
iary oceans closed during the Variscan orogeny (Martínez-Catalán et
al., 1997; Arenas et al., 2007a and b; Sánchez Martínez et al., 2007,
2011). These units were affected by high-pressure and low- to inter-
mediate temperature metamorphism (Arenas et al., 1995; López
Carmona et al., 2009; Rodríguez et al., 2003), and yield Lower Ordovi-
cian igneous protolith ages (ca. 480 Ma; Santos Zalduegui et al.,
1995). The uppermost units, resting on top of the ophiolites, are
interpreted to be rocks of the northern (Laurussian) margin of the
Rheic Ocean (Fig. 3b) (Arenas et al., 2007a,b; Martínez-Catalán et
al., 1997).

The Paleozoic passive margin rocks of Iberia are divided into several
zones based on differences in their Lower Paleozoic sedimentary suc-
cessions, which likely reflect variations in relative proximity to the
Gondwana margin (Fig. 2). The Cantabrian Zone preserves a coastal
environment, whereas the West Asturian–Leonese, Central Iberian,
Galicia–Trás-os-Montes (Lower Schistose Domain) and/or Ossa-
Morena zones preserve a more outboard tectonostratigraphic succes-
sion (Fig. 2a) (Aramburu et al., 2002; Gutiérrez-Marco et al., 1999;
Julivert et al., 1972; Marcos and Farias, 1999; Martínez-Catalán et al.,
1997, 1999; Pérez-Estaún et al., 1990; Quesada, 1990; Quesada et al.,
1991; Ribeiro et al., 1990; Robardet, 2002, 2003). Today the boundaries
that separate themajor tectonostratigraphic zones in Iberia are defined
by major Variscan fault systems that in some cases were reactivated as
extensional and/or strike-slip structures in the aftermath of the
Variscan orogeny (e.g., Martínez Catalán et al., 1992, 2003).
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3. Closing of the Rheic and the Variscan orogeny

The Variscan orogeny, named for a fabled Germanic tribe in NE
Bavaria (Suess, 1888), represents a protracted deformation phase
that amalgamated major and minor continental blocks and island
arcs into what is now Western Europe (e.g. Matte, 2001) (Figs. 1
and 3). Rocks deformed during Variscan orogeny can be found
today from Portugal east to Poland, north to the British Isles and Ger-
many to south along the northern margin of the present-day Mediter-
ranean. The Variscan is interpreted to result from the closure of the
Rheic Ocean, which was subducted northward beneath the southern
margin of the drifted peri-Gondwanan terranes that closed the
Iapetus Ocean (Fig. 3) (e.g. Díez Fernández et al., 2012). Rheic sub-
duction included consumption of the Rheic mid-ocean ridge by
395 Ma (Gutiérrez-Alonso et al., 2008; Woodcock et al., 2007),
which resulted in an increase in convergence rate between opposing
margins. The continuing debate about the number of basins that
existed during the Variscan has caused confusion as to the
geodynamic evolution of Variscan collisions and the paleogeography
of the various crustal blocks.

Most models of Variscan dynamics suggest that the putative major
and minor basins that existed between the peri-Gondwana terranes
and Gondwana were closed in the Late Devonian (e.g., Azor et al.,
2008; Dallmeyer et al., 1997; Franke et al., 2005; Martínez Catalán et
al., 2007; Pin and Paquette, 1997; Rodríguez et al., 2003). Structural re-
lationships and their timing indicate that deformation, metamorphism
and exhumation of oceanic and continental rocks found today within
interpreted sutures, represent collision and the progressive transport
of a deformation front towards the foreland (Dallmeyer et al., 1997;
Pérez-Estaún et al., 1991b). The foreland is mainly represented by
Paleozoic passive margin sedimentary rocks that today are mostly pre-
served in NW Iberia (Fig. 3b). Collision initially produced recumbent
folds that verged and migrated from the suture towards the foreland.
Continued shortening then led to the extensional collapse of the thick-
ened orogenic hinterland (Arenas andMartínez-Catalán, 2003; Escuder
Viruete et al., 1994) at ca. 320 Ma (Martínez-Catalán et al., 2009), an
event that was coeval with the development of a non-metamorphic
foreland fold-thrust belt within the Cantabrian Zone (Pérez-Estaún et
al., 1994). Final deformation associated with the closure of the Rheic
Ocean produced large-wavelength upright folds and strike-slip ductile
shear zones (Martínez-Catalán et al., 2009), along with regional meta-
morphism that diminishes towards the internal zones to the foreland.
Metamorphic grade ranges from high-middle grade rocks in the hinter-
land (Arenas and Martínez-Catalán, 2003), to low and very low grade
and even diagenetic in the foreland (Abad et al., 2003; Gutiérrez-
Alonso and Nieto, 1996).

Today the structural trace of the Western Europe Variscan Belt in
northern Iberia (Bard et al., 1971; Ribeiro et al., 1995) outlines one
of the most dramatic curved orogenic systems on Earth (the
Cantabrian Orocline), with an arc-trace that spans 180° of curvature
(Fig. 1). Ries and Shackleton (1976) divide the Cantabrian Orocline
into three structural zones based on observed longitudinal tangential
strain: the outer arc (tangential extension), the inner arc (tangential
compression), and a small (ca. 10 km wide) dividing neutral zone
(no arc-parallel strain). In their model, arc-parallel stretching in the
outer arc increases away from the core (Ries and Shackleton, 1976),
and shortening in the inner arc increases towards the core (Julivert
and Marcos, 1973). The outer arc extension was primarily accommo-
dated by dextral strike-slip faulting in the upper crust, and ductile
elongation in the lower crust (Gutiérrez-Alonso et al., 2004). At the
core of the Cantabrian Orocline is the Cantabrian–Asturian Arc
(Fig. 2b), which is considered by many to consist of strata deposited
along the south margin of the Rheic Ocean (Martínez Catalán et al.,
1992; Murphy et al., 2006; Robardet, 2002, 2003) (Fig. 2). Curvature
of the Cantabrian Orocline is most extreme within the Cantabrian–
Asturian Arc (Fig. 2).
The CantabrianOrocline has been the object of numerous paleomag-
netic and structural studies ever since early studies by Schultz (1858),
Barrois (1882), Suess (1909) and Staub (1926) first documented the
dramatic curvature; likewise, many varying explanations have been
given for its origin and development. Following Carey's (1955) original
orocline hypothesis for the Cantabrian Orocline, a number of models
have been suggested for its formation (Fig. 4). Matte and Ribeiro
(1975) and Matte (1986) suggested that the curvature is due to dis-
placement of a ‘Cantabria microplate’ westward, resulting in a primary
non-rotational arc (Fig. 4a); whereas Ries and Shackleton (1976) pro-
posed that the curvature formed by late Variscan north–south compres-
sion that produced a counterclockwise rotation of central and southern
Iberia relative to Brittany (Fig. 4b). Lorenz (1976), Lorenz and Nicholls
(1984), Lefort (1979) and Dias and Ribeiro (1995) suggested that irreg-
ular coastlines of opposing margins, or promontory–salient pairs,
caused the curvature (Fig. 4c). Later, Ries et al. (1980) used strain and
limited paleomagnetic data to argue that at least a portion of the curva-
ture in the Cantabrian Orocline is secondary, or post-orogenic (Fig. 4d).
Brun and Burg (1982) offered what they considered to be a progressive
model, with the observed structural curvature being caused by sinistral
wrenching during a single collision event, which produced at least some
of the observed curvature seen today (Fig. 4e). Pérez-Estaún et al.
(1988) proposed a thin-skinned model, explaining the arcuate shape
of the Cantabrian–Asturian Arc as the result of progressive clockwise
rotational emplacement of a series of nappes (the so called photograph-
ic iris model), with a simultaneous initiation of radial and longitudinal
structures during thrust emplacement (Fig. 4f). In a review of the
geodynamics of the SW Europe Variscides, Ribeiro et al. (2007)
(Fig. 4g) argued for a “soft plate tectonics” model in which some of
the present-day curvature in the Cantabrian Orocline is primary, with
secondary tightening due to the impingement of the ‘Cantabrian
indentor’ in the Devonian. Most recently, Martínez-Catalán (2011)
and Martínez-García (2012) argue that the oroclines of the Variscan
are related to late strike-slip tectonics along a broad dextral
intracontinental shear zone (Fig. 5h).

Since Carey's seminal work on oroclines, reconstructing the kine-
matic evolution and mechanics of curved mountain systems has
been a fundamental component of understanding the paleogeograph-
ic and tectonic evolution of continents (e.g. Marshak, 2004; Sussman
and Weil, 2004; Van der Voo, 2004). The keys to testing various
models for curvature formation in the Cantabrian Orocline, is
establishing a robust kinematic model that constrains the timing of
rotations relative to the larger tectonic events that occurred during
and subsequent to the main phase of Variscan convergence in this re-
gion. Deciphering this kinematic history is difficult due to the signifi-
cant vertical-axis rotations involved. For oroclinal buckling to be a
viable model, two deformation phases need to be differentiated: an
initial compressive phase that forms a relatively linear belt with little
to no rotation of developing structures, and a second phase that
causes vertical-axis rotation of existing orogenic limbs. Below is a re-
view of data collected over the years that support an orocline model
of secondary vertical-axis rotation – as first envisioned by Carey
(1955) – for formation of the Cantabrian Orocline.

4. Observations used for establishing secondary rotation of the
Cantabrian Orocline

4.1. Paleomagnetic data

The most robust method for quantifying vertical axis-rotation in
curved orogens is paleomagnetic analysis (e.g., Irving and Opdyke,
1965; Lowrie and Hirt, 1986; Muttoni et al., 1998; Van der Voo and
Channell, 1980; Weil and Sussman, 2004), and even then, such anal-
ysis needs to be accompanied by geologic and structural observations
that help constrain the rotation, strain and translation components of
the three-dimensional deformation field (e.g., Hindle and Burkhard,
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Fig. 4. Schematic sketches of various models proposed for development of the Cantabrian Orocline. (A) Displacement of a ‘Cantabria microplate’ westward, resulting in a primary
non-rotational arc (after Matte and Ribeiro, 1975, and Matte, 1986). (B) Curvature formed by late Variscan north–south compression that produced counterclockwise rotation of
central and southern Iberia relative to Brittany (after Ries and Shackleton, 1976). (C) Curvature formed by impinging irregular coastlines during tectonic convergence (after Lorenz,
1976, and Lefort, 1979). (D) Progressive arc model based on early strain and paleomagnetic data (after Ries et al., 1980). (E) A progressive arc model based on sinistral wrenching
(after Brun and Burg, 1982). (F) A thin-skinned model that explains the Cantabrian–Asturian Arc's arcuate shape by progressive clockwise emplacement of nappes (after
Pérez-Estaún et al., 1988). (G) A “soft plate tectonic” model in which some of the present-day curvature is primary, with secondary tightening due to impingement of the
‘Cantabrian indentor’ in the Devonian (after Ribeiro et al., 2007). (H) Orocline development by strike-slip tectonics (after Martínez-Catalán, 2011).
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1999; Kwon and Mitra, 2004; Pueyo et al., 2003, 2004; Weil and
Sussman, 2004; Yonkee and Weil, 2010a). If deformation occurs sub-
sequent to magnetization acquisition, then the magnetization will re-
cord all ensuing rotations. Consequently, if magnetizations are found
that vary systematically as a function of strike around a curved
orogen, then secondary oroclinal buckling, regardless of the mecha-
nism, is likely the most viable kinematic model for curvature forma-
tion (Yonkee and Weil, 2010b).
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Correlations between changes in regional structural trend (relative to
a reference trend), and rotations estimated frompaleomagnetic or defor-
mation fabric directions (relative to a reference direction) are evaluated
using a strike test (Eldredge et al., 1985; Lowrie and Hirt, 1986;
Schwartz and Van der Voo, 1983; Yonkee and Weil, 2010b). In this
way, end member kinematic models can be statistically tested by
collecting sufficient sites that are distributed evenly around a given
curved structural trace (Yonkee and Weil, 2010b). For the purposes of
simplicity, only end member models are described to provide perspec-
tive for the datasets and figures described in this review (Fig. 5). In the
“Primary arc” end-membermodel structures initiatewith curvature (pri-
mary arcs) and do not experience additional rotation during subsequent
deformation (Fig. 5a and b) (Weil and Sussman, 2004). In this case, pa-
leomagnetic directions remain unchanged, regardless of structural
trend, resulting in a strike test with a slope of 0. Within the family of pri-
mary arcs there can be cases were thrust transport has a uniform slip di-
rection, or alternatively a radial slip pattern. For a uniform slip model,
both paleomagnetic and shortening directions remain unchanged, and
both strike tests have a slope of 0 (Fig. 5a); whereas for radial slip, paleo-
magnetic directions are not rotated and define a slope of 0, while initial
radial shortening directions define a slope of 1 (Fig. 5b). The other end
member is an orocline (Fig. 5c), a belt with initially linear thrusts and
consistent shortening fabrics that undergoes 100% secondary rotation
during subsequent deformation. In this case strike tests would yield
slopes of 1 for both paleomagnetic and shortening directions. In summa-
ry, a strike test slope of 0 for paleomagnetic data indicates a primary arc,
and a slope of 1 indicates an orocline. However, a strike test for deforma-
tion fabric data, or any geologic fabric, can only be uniquely interpreted if
constraints can be placed on initial fabric orientation.

Most geologic, structural and paleomagnetic studies done to test the
orocline hypothesis for the Cantabrian Orocline have been done in its
central core — the Cantabrian–Asturian Arc (Fig. 3b). Within the
Cantabrian–Asturian Arc there are two well-defined fold sets that out-
line the present-day curvature: an arc-parallel set and an arc-
perpendicular radial set (Fig. 3b) (established by Aller and Gallastegui,
1995 Julivert and Marcos, 1973;). In general, major thrusts of the
Cantabrian–Asturian Arc are concave towards the foreland and propa-
gate towards the east (the present-day core) with a common
decollement surface in theCambrian Láncara Formation (Julivert, 1971).

Early paleomagnetic studies in the Cantabrian–Asturian Arc were
used to test the various proposed rotational models, and demonstrated
that at least some of the arc's curvature is of a secondary nature
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(e.g., Bonhommet et al., 1981; Hirt et al., 1992; Perroud, 1986; Perroud
and Bonhommet, 1981; Stewart, 1995). However, the ability to establish
robust evidence for oroclinal buckling was limited due to a lack of
sufficient data around the entire arc, and the failure to recognize and
distinguish between secondary syn-tectonic and post-tectonic remag-
netizations. Building on these early studies, more recent paleomagnetic
investigations from around the arc have established the Cantabrian–
Asturian Arc as an orocline that tracked the entire progression from an
early linear orogen to a secondarily folded arc (Fig. 6a and b) (Parés et
al., 1994; Van der Voo et al., 1997; Weil et al., 2000, 2001; Weil, 2006;
Weil et al., 2010; Weil et al., 2012).

Studying the tectonic units located in the inner arc (Fig. 2b) Weil
et al. (2000, 2001) identified three separate magnetization compo-
nents carried by Paleozoic carbonates within the Cantabrian–Asturian
Arc. Two of the magnetizations are Carboniferous in age, and a third is
Permian–Triassic. Local and regional fold tests for the two Carbonifer-
ous components indicate that these magnetizations were secondary
overprints acquired either during (the C component) or after (the B
component) early longitudinal folding that occurred during the
Bashkirian in the West Asturian–Leonese Zone and during the
Moscovian in the Cantabrian Zone, but prior to secondary vertical-
axis rotation in the late Moscovian, Kasimovian and Gzhelian (Weil
et al., 2000, 2010). When all available B and C component paleomag-
netic site means are compared to deviations in structural trend
around the outer provinces of the Cantabrian–Asturian Arc, a strike
test slope of 0.98±.06 is established, indicating that the orocline
end-member model is the best kinematic model for the Cantabrian
Orocline (Fig. 6c). The later Permo-Triassic (P–T) component has
seen little to no distortion since the time of magnetization acquisition,
and is within error of reference P–T paleomagnetic poles for stable
Iberia (Weil et al., 2001). From these data a loose P–T upper age
limit was first placed on the final phase of oroclinal buckling in the
Cantabrian–Asturian Arc (Weil et al., 2001). More recently, Tohver
et al. (2008) used 40Ar/39Ar analysis of the smectite–illite transition
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figuration of Cantabrian–Asturian Arc after oroclinal buckling, which resulted in count
Somiedo/Correcillas–Valsurbio units, clockwise rotation of the northern limb and buckling
of the arc (mainly the Sobia/Bodón–Central Coal Basin, Ponga and Picos de Europa units)
data from the Cantabrian–Asturian Arc fold-nappe province (Van der Voo et al., 1997; We
α 95% confidence intervals, α95=2σCI, and standard deviation of residuals, σr are all give
in Cantabrian–Asturian Arc carbonates to date the thermal-fluid
event that is interpreted to have potentially altered these rocks dur-
ing Variscan deformation. The age data collected from different clay
grain size fractions, coupled with quantitative polytype modeling, in-
dicated an authigenic age that is coeval with the established late Pa-
leozoic syn-orocline remagnetization (the B and C components) age
of Cantabrian–Asturian Arc carbonates. The fluids caused transforma-
tion of Fe-rich smectite to Fe-poor illite and created a population of
authigenic magnetite that was then responsible for carbonate
remagnetization (Weil and der Voo, 2002). Weil (2006) and Weil et
al. (2012) found a similar magnetic history for portions of the inner-
most tectonic units of the Cantabrian–Asturian Arc. Finally, Weil et al.
(2010) presented new paleomagnetic data from Early Permian sam-
ples from the northern Cantabrian Orocline, and the southern Central
Iberian Orocline. After minor structural correction to the analyzed di-
rections, data from both arcs yielded expected Early Permian paleo-
magnetic pole positions for stable Iberia, with no indication of
vertical-axis rotation since the Early Permian. Consequently, the
Early Permian was argued to mark termination of oroclinal buckling.
This result placed a well-constrained time window of about 10 Ma
for oroclinal buckling (Fig. 7).

4.2. Structural data

Along with bulk rotation, the kinematic evolution of an orogenic
belt is recorded in the spatial–temporal development of its three-
dimensional displacement field, which also includes bulk translation
(slip on major faults) and internal strain (accommodated by
mesoscopic to grain-scale structures) (Weil and Sussman, 2004). Un-
derstanding the kinematic evolution of orogenic belts is challenging
due to complexities in determining all components of the displace-
ment field over various spatial and time scales (e.g., Gray and
Stamatakos, 1997; Hindle and Burkhard, 1999; Hindle et al., 2002;
Marshak, 1988; Mitra, 1994; Thibert et al., 2005). Many orogenic
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belts display widespread layer-parallel-shortening fabrics that
formed early in their deformation histories, which provide a record
of early stress patterns (e.g. Geiser, 1988; Geiser and Engelder,
1983; Gray and Stamatakos, 1997; Hogan and Dunne, 2001; Mitra,
1994; Ong et al., 2007; Yonkee and Weil, 2010a). However, early
layer-parallel-shortening fabrics are commonly modified during sub-
sequent deformation. A commonly observed modification is vertical-
axis rotation that reorients fabrics, and complicates the reconstruc-
tion of paleo-stress and paleo-strain fields and thus interpretation of
the kinematic evolution. By integrating multiple datasets, such as
mesoscopic structural patterns, anisotropy of magnetic susceptibility,
strain determinations, calcite twin analysis, and paleomagnetism,
limitations of individual sets can be minimized and robust kinematic
models developed (Fig. 5) (Yonkee and Weil, 2010b).

Calcite twinning analysis in the Cantabrian–Asturian Arc of north-
ern Spain by Kollmeier et al. (2000) provided a complementary
dataset that established paleo-stress directions recorded during the
two main phases of shortening that produced early longitudinal fold-
ing and thrusting, and eventual secondary oroclinal buckling (Fig. 8).
Because calcite twinning typically occurs during the earliest phases of
shortening due to the low value of critical resolved shear stress
required to initiate twinning (about 10 MPa), the results provide a
robust proxy for early paleo-stress directions within orogenic systems
(e.g., Craddock et al., 1988; Ferrill, 1991, 1993; Ferrill and Groshong,
1993; Harris and van der Pluijm, 1998). This is especially true since
calcite twinning is a strain hardening process that restricts later
twin overprinting (e.g., Donath and Fruth, 1971; Kilsdonk and
Wiltschko, 1988; Teufel, 1980). Calcite twin analysis from the
Cantabrian Zone of the Cantabrian–Asturian Arc (Fig. 2) revealed
two discrete shortening trends: 1) an early D1 layer-parallel-
shortening stress oriented perpendicular to regional structural trends
that has an in situ radial pattern around the Cantabrian–Asturian Arc
(Fig. 8a), and 2) a secondary D2 overprinted shortening direction that
is roughly parallel to the regional structural trend (Fig. 8b) (Kollmeier
et al., 2000). Both datasets have a linear (strike test slope of 1.0) rela-
tionship between changes in shortening direction trend and structur-
al trend. D1 shortening trends remain perpendicular to structural
trend around the arc, while D2 shortening trends remain parallel
(Fig. 8). This led Kollmeier et al. (2000) to argue for a two stage tec-
tonic model of D1 E–W shortening (in present-day coordinates)
that produced a roughly N–S linear thrust belt, which was followed
by a D2 phase the resulted in N–S directed shortening and thrust
sheet rotation (Figs. 7 and 8c). Due to the high angle of the two
shortening events, the strain hardening effects of calcite twinning
did not interfere with the preservation and recording of the two dis-
crete events in the Paleozoic carbonates of NW Iberia.

To further test and constrain the stress field changes established
from calcite twin analysis, Pastor-Galán et al. (2011) documented
the spatial and temporal distribution of systematic tensile joints
from multiple rock units exposed throughout the Cantabrian–
Asturian Arc (Fig. 9). Though caution is needed when using joint sys-
tems as kinematic markers in polydeformed rock units, systematic
joint sets can provide a stress field record of past deformation
(e.g., the Ouachita salient (Whitaker and Engelder, 2006), the Appala-
chian plateau (Engelder and Geiser, 1980), the Idaho–Wyoming
salient (Yonkee and Weil, 2010a), the Variscan belt in Wales
(Dunne and North, 1990), and the Pyrenees (Turner and Hancock,
1990)) especially when they affect synorogeneic deposits limited by
angular unconformities that provide temporal constraints on the devel-
opment of the different joint sets (Pastor-Galán et al., 2011). There are
multiple joint sets present throughout the Cantabrian–Asturian Arc,
thus, caution is needed when linking the spatial pattern of joints
across a region to a specific tectonic history (e.g., Dunne and North,
1990; Engelder and Geiser, 1980). Fortunately, there are several
well-dated angular unconformities within the Paleozoic passivemargin
and syn-orogenic strata preserved in NW Iberia, which allowed
Pastor-Galán et al. (2011) to isolate discrete joint sets to temporally
bound rock units. In this way, the regional development of successive
joint sets in the Cantabrian–Asturian Arc was unraveled, as the occur-
rence of angular unconformities constrained the timing of joint forma-
tion to pre- and post-unconformity sets. Overall, three groups of
sedimentary rocks separated by angular unconformities were studied;
each constrained to predate, be coeval with, and to postdate orocline
formation (Fig. 9).

All joint sets were interpreted to be products of the local and re-
mote stress fields, and are therefore representative of far-field tecton-
ic stresses (e.g., Eyal et al., 2001; Gross et al., 1995). The youngest
joint sets generated in the Cantabrian–Asturian Arc are recorded in
Permian outcrops (Fig. 8a). These sets, which are found across the
arc and show no regional trend variability (a strike test slope of 0),
were interpreted as being caused by bedding flexure during Alpine
collision of Iberia with the rest of Europe in Cenozoic times (e.g.,
Alonso et al., 1996; Álvaro et al., 1979), and by the opening of the
Bay of Biscay during Mesozoic times (e.g., Gómez et al., 2002; Gong
et al., 2008). These post-orocline joint sets corroborate the study by
Weil et al. (2010) who used paleomagnetic data to establish that de-
position of Permian strata post-dated formation of the larger
Cantabrian Orocline.

The joint sets documented from syn-tectonic Stephanian outcrops
recorded two additional joint sets that were not found in the
post-orocline Permian outcrops (Fig. 9b) (throughout this paper the
absolute and relative timescale of Davydov et al., 2004 is used). A lon-
gitudinal set has an arcuate pattern with lower overall curvature than
the trends of the underlying structures while an orthogonal set has a
radial pattern, sub-perpendicular to the main underlying structural
trend (Fig. 9b). These joint sets were interpreted to have formed dur-
ing N–S (in present-day coordinates) D2 shortening, which resulted
in oroclinal buckling. Strike tests of the syn-tectonic Stephanian
joint sets indicate that they were formed penecontemporaneous
with arc–limb rotation (strike test slopes of between 0.57 and 0.72,
indicating 30–40% of oroclinal buckling occurred prior to joint forma-
tion) and thus preserve a snapshot view into the oroclinal buckling
deformation history.

Observations from pre-Stephanian (Neoproterozoic and Paleozoic)
outcrops underlying the Stephanian outcrops record a complex set of
joint sets that include all the Stephanian and younger joint sets as
well as older sets that are parallel and perpendicular to the main
Variscan structural trend (Fig. 9c). These joint sets were interpreted to
have formed during E–W (in present-day coordinates) D1 shortening,
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Fig. 8. (A and B) Strike tests and (C) schematic block diagrams summarizing the evolution of the Cantabrian–Asturian Arc based on acquisition of calcite twin strains, and associated
stresses, during two discrete deformation phases associated with oroclinal buckling. Data and block diagrammodified from Kollmeier et al. (2000). (A) Structural strike test for data
from calcite twin strains interpreted to represent D1 east–west shortening (in present-day coordinates using a σref=244°) (slope of 1.11±.09). (B) Structural strike test for data
from calcite twin strains interpreted to represent D2 north–south shortening (in present-day coordinates using a σref=176°) (slope of 1.05±.09). Statistical parameters are as in
Fig. 6c.
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which resulted in initial longitudinal folding and faulting. Strike tests of
the pre-Stephanian joint sets indicate that there is a direct correlation
between changes in structural trend around the Cantabrian–Asturian
Arc and changes in the orientations of preserved D1 joint sets (strike
test slopes of 1.03 and 1.16) (Fig. 9c). Consequently, the current orien-
tation of pre-Stephanian joint sets are a consequence of about 180° of
vertical-axis rotation of approximately linear joint sets that started par-
allel, and perpendicular with, early longitudinal fold axes; while the
Stephanian outcrop joint sets record about 100° of rotation (Fig. 9b).

Combining the age constraints for the timing of joint set formation
from existing angular unconformities, with strike tests that quantified
relative amounts of rotation experienced by each subsequent set
(Fig. 9), Pastor-Galán et al. (2011) argued that during the Kasimovian
the Cantabrian–Asturian Arc closed between 30% and 50%, and by the
lower-most Permian was completely closed. Assuming a simplified
constant rotation rate, about 100° of arc buckling took about 5 Ma
from the upper-most Kasimovian to the Carboniferous–Permian
boundary. The initiation of rotation in the Cantabrian–Asturian Arc
had to be before the generation of the joints in the Stephanian rocks
and, if the buckling rate was similar to that of Stephanian times, sug-
gests that buckling began in the Moscovian (around 310 Ma) (Fig. 7).

In the outer arc portion of the Cantabrian Orocline, Aerden (2004)
used three-dimensional microstructural analysis of porphyroblasts to
argue for secondary oroclinal buckling. By documenting the geomet-
ric relationships between inclusion trails and regional structural
trends Aerden (2004) was able to isolate the multiple deformation
phases that affected NW Iberia during the late stages of the Variscan
orogeny. Specifically it was determined that the strikes of the domi-
nant matrix foliation in the analyzed samples paralleled the overall
structural trend of the Cantabrian Orocline; whereas, the strikes of
their inclusion trails were independent of their location around the
arc, and instead correlated with successive crustal shortening events
during the Variscan orogeny. These observation were used to support
a two-stage shortening model, which resulted in oroclinal develop-
ment by late-stage modification of an originally N–S to NE–SW
trending orogen (Aerden, 2004), although this method does not
provide discrete temporal constraints on the deformation events.

Though not a classic macro- or microscopic structural fabric,
paleocurrent data was recently used as a geometric marker for tracking
strain in the coupled Cantabrian and Central Iberian orocline system
(Shaw et al., 2012a). Paleocurrent data (e.g., cross bed foresets, ripple
crests, ball and pillow structures, slump folds, and incised channels)
was collected from outcrops across the Iberia in the lower Ordovician
Armorican Quartzite (Fig. 10). This quartzite is a prominent unit of the
lower Paleozoic Gondwana margin and is predominantly comprised of
thick-bedded clean quartzites, but also contains beds of mature sand-
stones with silt and shale intercalations (Aramburu, 1989; Aramburu
and García-Ramos, 1993; Gutiérrez-Marco et al., 2002 and references
therein; Gutiérrez-Alonso et al., 2007). Stratigraphic characteristics sug-
gest a nearshore shallow water depositional environment under the
range of tidal, shore current, and storm influences (e.g., Gutiérrez-
Marco et al., 2002).

When restored to paleohorizontal, measured paleocurrent direc-
tions fanned around the coupled oroclines, which when restored for
oroclinal buckling, indicates a formerly linear margin with a consis-
tent westward paleocurrent direction (Fig. 10). Strike test analysis
of site mean current directions reveals a best-fit linear model for all
of the data, indicating a one-to-one correlation of changes in current
direction with present-day changes in structural trend (slope of 1.2)
(Fig. 10a). This palinspastic restoration implies that the Rheic Ocean
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Fig. 9. Strike tests and schematic cartoons of the orientation of different joint sets from data presented in Pastor-Galán et al. (2011). (A) Representative data of the three joint set
orientations constrained to be Permian and younger. Note the lack of correlation between structural trend and joint orientation (slopes of −0.03±.08, 0.09±.08, 0.00±.12).
(B) Representative data of the two joint set orientations constrained to be Stephanian in age. Note the correlation between structural trend and joint orientation, which indicates
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opened to the west (in present-day coordinates), and was bound by a
landmass to the east (Fig. 10b) (the Gondwana continent). Unfortu-
nately, these data do not provide further time constraints on orocline
formation of the Central Iberian Orocline.

To better understand the localized structural response to oroclinal
buckling, Van der Voo et al. (1997), Weil et al. (2000), Weil (2006),
andWeil et al. (2012) performed detailed paleomagnetic studies on in-
dividual structural domains from throughout the core of the Cantabrian
Orocline. These studies used the preserved record of syn-tectonic
magnetizations to decipher the rotational and kinematic history of indi-
vidual thrust sheets, and described in detail how rotation, and hence
oroclinal buckling might have been accommodated at the local scale
(Fig. 11a–c). Due to the complexity of superimposed-folding in the
Cantabrian–Asturian Arc, these studies determined the optimal tectonic
correction for individual site mean directions within discrete structural
domains. Each sampling site was evaluated in the context of the local
structures to determine the best possible correction to undo post-
magnetization tilts and rotations. Deformation axes were then
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determined by calculating the best-fit rotation axes to cluster in-situ
magnetic vectors to a known reference direction. The observed girdle
distributions represented the differential rotation of D1 fold limbs dur-
ingD2oroclinal buckling (Fig. 11c). These studies argued for an early D1
folding and faulting event that produced longitudinal folds that today
are arc parallel (based on earlier work by Julivert and Marcos, 1973).
This was followed by D2 deformation that produced a ‘radial’ fold set
(Julivert and Marcos, 1973) characterized by variably plunging fold
axes that are imposed on existing D1 structural fabrics, and in the
hinge zone produced conical folds (Fig. 11e) (Pastor-Galán et al.,
2012b). In this way, the early longitudinal structures control the orien-
tation, and position, of subsequent fold axes, whichwas accommodated
by fault reactivation during D2 shortening, bed steepening, increased
thrust stacking and arc tightening. A typical example comes from the
study of the Lagos del Valle syncline by Van der Voo et al. (1997)
(Fig. 11). This study found systematic clockwise and counter-
clockwise rotations totaling at least 120° within a single km-scale
open syncline positioned in the hinge zone of the Cantabrian–Asturian
Arc (Fig. 11a). Two remagnetization components were reported that
were acquired during Variscan deformation, but prior to oroclinal buck-
ling (the B and C components); thus, themagnetizations record 100% of
the observed variability in structural trend seen today (Fig. 11c), and
when restored produce a linear N–S trending synclinorium (Van der
Voo et al., 1997).

Due to the apparent control of existing geologic surfaces on the
accommodation of secondary vertical-axis rotation in the Cantabrian–
Asturian Arc, Pastor-Galán et al. (2012b) investigated the effects of
conical folding during superimposed episodes of bed rotations about
horizontal and steep axes, with a focus on the hinge zone of the
Cantabrian–Asturian Arc (Fig. 11d). They concluded that reactivating cy-
lindrical longitudinal D1 folds resulted in twodifferent structural regimes.
Within the inner portion of secondarily bent folds, shortening occurs by
the formation of radial conical folds with shallowwest-plunging axes to-
wards the vertical-axis of rotation (Fig. 11e) (Pastor-Galán et al., 2012b).
Whereas in the outer portion of secondarily bent folds, there is D1
axis-parallel stretching and formation of large wavelength superposed
folds with a distinct conical geometry (after Ramsay, 1967).

The Narcea Antiform, a major Variscan anticlinorium, delineates
the trace of the Cantabrian Orocline and provides further support
for a secondary origin for the Cantabrian Orocline (Fig. 2b). The
anticlinorium is cored by Neoproterozoic rocks that are carried on
major thrusts that lie along and define the foreland–hinterland
boundary (Gutiérrez-Alonso, 1996). Thrust faults of the Cantabrian
Zone foreland root into these major thrusts. The Narcea Antiform, in-
cluding its major thrusts, outcrops along a continuous curved trace
parallel to the Cantabrian Orocline structural grain. The major thrusts
consist of shear zones that are up to 2 km wide, and which developed
under low grade metamorphic conditions (Gutiérrez-Alonso and
Nieto, 1996) during the upper Serpukhovian (321 Ma., Dallmeyer et
al., 1997). Kinematic indicators in the shear zones show a centripetal
pattern of hanging wall translation towards the core of the arc, a pat-
tern that can only be acquired if the thrust related shear zones were
rotated around a vertical axis subsequent to their emplacement.

Palinspastic restoration of individual structural domains (e.g., Lagos
del Valle syncline in Van der Voo et al., 1997; Proaza anticline inWeil et
al., 2000) and tectonic domains (e.g., the Ponga Units inWeil, 2006; the
Esla Unit Weil et al., 2012) all indicate that the present-day structural
sinuosity in the Cantabrian–Asturian Arc is a consequence of secondary
rotation of originally linear features, and the modification and tighten-
ing of originally curvilinear features (e.g., hanging wall lateral/oblique
structures) (Fig. 6a and b). These paleomagnetic and structural observa-
tions indicate that the Variscan tectonic history in the Cantabrian–
Asturian Arc involved at least two temporally discrete deformation
phases. D1 resulted in thrusting and folding related to west-to-east tec-
tonic transport (in present-day coordinates) that lasted into the
Kasimovian. Thrusting during this initial phase resulted in locally com-
plex footwall geometries characterized by frontal and oblique/lateral
ramps — particularly in the core zone of the Cantabrian–Asturian Arc
(e.g., Ponga and Esla units (Alonso, 1987; Alvarez-Marron and
Pérez-Estaún, 1988)) (Fig. 6a). D1 foldingwas followed by late Variscan
D2 deformation that buckled originally linear, north–south (in present-
day coordinates) trending thrusts and hanging wall folds (mainly by
conical folding in the hinge zones of the arc), and modified drape
folds associated with D1 frontal/lateral/oblique ramp intersections
(Fig. 6b). Thrust sheet modification was accommodated by reactivation
of lateral/oblique ramps as frontal ramps, reactivation of frontal ramps
as oblique ramps, and overall tightening of D1 folds, commonly by con-
ical folding of existing D1 arc-parallel fold limbs (Pastor-Galán et al.,
2012b; Van der Voo et al., 1997; Weil et al., 2000, 2001; Weil et al.,
2012). These structural modifications were a kinematic requirement
for accommodating north–south shortening associated with oroclinal
buckling.
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5. Oroclinal lithospheric delamination model

The above review of paleomagnetic, structural, and geologic data
indicate that the Cantabrian Orocline is a true secondary orocline as
first envisioned by Carey in 1955. At this scale it seems unlikely, if
not dynamically impossible, for the Cantabrian Orocline to be a
thin-skinned crustal structure, as the space problems alone from ro-
tating the inner Cantabrian–Asturian Arc though a 180° bend cannot
be easily reconciled. Thus, one of the more challenging questions
concerning the formation of the Cantabrian Orocline is the evolution
of its three-dimensional geometry, especially with regards to the ex-
tent of the lithosphere affected by observed near-surface vertical-axis
rotations. One of the main consequences of collisional orogeny is the
initial thickening of the mantle lithosphere (e.g. Pysklywec et al.,
2002, 2010). Modeling has shown that if lithospheric thickening is ex-
tensive enough, the lower lithosphere will become gravitationally un-
stable, and ultimately detach and cause rapid mechanical thinning of
the mantle lithosphere beneath the orogenic belt (e.g. Bird, 1978;
Collins, 1994; Davy and Cobbold, 1991; Houseman and Molnar,
1997; Houseman et al., 1981; Molnar and Houseman, 2004; Molnar
et al., 1998; Morency and Doin, 2004; Nelson, 1992; Pastor-Galán et
al., 2012c; Pysklywec, 2006; Pysklywec et al., 2002, 2010; Schott
and Schmeling, 1998; Turner et al., 1992). Some of the predicted
by-products of delamination are syn-orogenic or post-orogenic litho-
spheric thinning, high thermal gradients, domal uplift and near-
surface extension (e.g., Ducea and Saleeby, 1998; Fernández-Suárez
et al., 2000; Lee et al., 2006; Levin et al., 2000; Muñoz-Quijano and
Gutiérrez-Alonso, 2007; Nelson, 1992; Saleeby and Foster, 2004;
Whalen et al., 1996). The two most important geodynamic processes
responsible for mechanical thinning of lithosphere in orogenic envi-
ronments are: (i) slab break-off of subducted lithosphere (e.g. Gerya
et al., 2004; Regard et al., 2008; van Hunen and Allen, 2011; von
Blanckenburg and Davies, 1995), and (ii) lithospheric delamination
(e.g., Bird, 1978, 1979; England and Houseman, 1989; Morency and
Doin, 2004; Nelson, 1992). More recently Gutiérrez-Alonso et al.
(2004, 2012) argued that oroclinal buckling at the crustal-scale can
also result in differential thinning and thickening of the mantle litho-
sphere and may lead to lithospheric delamination. This model, based
on the kinematic requirements of oroclinal buckling of the Cantabrian
Orocline as dictated by the data presented above, infers that during
oroclinal buckling, the mantle lithosphere thins below the outer arc
and thickens beneath the inner arc (Fig. 12). These predictions were
built upon those of Ries and Shackleton (1976) who first proposed a
tangential longitudinal strain distribution for oroclinal buckling. A
predicted thickened lithospheric root is not observed in deep seismic
sections from the Cantabrian Orocline (Pérez-Estaún et al., 1994), and
thus, if the model of lithosphere thickening beneath the inner arc is
correct, its absence today suggests that a gravitational instability oc-
curred that resulted in removal of the mantle lithosphere from the
lower crust (Gutiérrez-Alonso et al., 2004). Today, a potentially simi-
lar process is occurring under the Vrancea Arc, in the Romanian
Carpathians, where an intense swarm of deep earthquakes (60 to
200 km deep; e.g. Chalot-Prat and Girbacea, 2000 Gvirtzman, 2002;)
is interpreted to be caused by ongoing mantle lithosphere delamina-
tion located under the maximum curvature region of the Vrancea
orocline. More recent seismic profiling and tomography confirm the
existence of an actively delaminating lithospheric root in the region
Fig. 11. (A) Geologic map of the Lagos de Valle syncline in the core of the Cantabrian–Astur
(orange circles) plotted from Van der Voo et al. (1997). (B) Equal area stereonets of 100% stru
α95 cones of confidence. Red filled (open) circles represent lower (upper) hemisphere pr
oroclinal buckling. Orange filled (open) circles represent lower (upper) hemisphere proje
oroclinal buckling. Note high degree of scatter in 100% structurally corrected data, indicatin
corrected to 5% (40%) untilting as in Van der Voo et al. (1997). Note that proper structural
degree of declination scatter away from the Late Carboniferous reference direction for Iberia
strike test for data from the Lagos de Valle syncline, which gives a slope of 0.99±.06. (E) T
Pastor-Galán et al., 2012b).
(e.g. Fillerup et al., 2010; Ismail-Zadeh et al., 2012; Knapp et al.,
2005).

The oroclinal-lithospheric-delamination hypothesis further pre-
dicts that removal of mantle lithosphere leads to upwelling of the as-
thenosphere, with an associated increase in crustal heat flow. It has
been well established that extensive magmatism accompanied for-
mation of the Cantabrian Orocline, and provides evidence for the
thick-skinned, lithospheric-scale response to buckling predicted by
Gutiérrez-Alonso et al. (2004) (Fig. 13) (Gutiérrez-Alonso et al.,
2011a, 2011b). Syn-orogenic Variscan granitoid magmatism was ac-
tive from 345 Ma to 315 Ma and records the building and collapse
of the Variscan belt (Fernández-Suárez et al., 2000) associated with
major D1 shortening and subsequent orogenic extension and con-
struction of a roughly linear N–S tending orogen (Fig. 13a). Ensuing
magmatism comprised of intrusive and volcanic rocks were emplaced
from 310 to 285 Ma, and are associated with, and slightly post-date
oroclinal buckling (Fig. 13a–c) (Fernández-Suárez et al., 2000;
Gutiérrez-Alonso et al., 2011a). The late-stage magmatic record con-
sists of mantle and crustal derived melts that show systematic
changes in their age, spatial distribution, petrology and geochemistry,
and include unique foreland magmatism in the core of the Cantabrian
Orocline (Fig. 13d) (Gutiérrez-Alonso et al., 2011b).

Magmatism associated with oroclinal buckling began in the oro-
genic hinterland with intrusion of mantle and lower crustal derived
mafic melts from 310 to 305 Ma (Fig. 13b). These mafic rocks and
their accompanying granitoids are interpreted as a by-product of de-
compression mantle and lower crustal melting, caused by lithospher-
ic extension around the outer arc of the orocline during buckling.
Thinning of the lithosphere in the outer arc resulted in a concomitant
rise of the asthenosphere, and eventual intrusion of gabbroic melts.
Together, these responses would have elevated the regional geother-
mal gradient. This increase in thermal energy would then result in
melting of middle-upper crustal rocks still hot from Variscan orogeny,
leading to intrusion of felsic, crustal derived, magmas into the outer
arc of the orocline between 305 and 295 Ma (Fig. 13c and d)
(Fernández-Suárez et al., 2000; Gutiérrez-Alonso et al., 2004, 2011b).

In the inner arc of the orocline, magmatism did not begin until
300 Ma, and did not end until 285 Ma (Fig. 13c and d). Magmatism
in the foreland core of the orocline began at about 295 Ma with the
intrusion of mantle and lower crust-derived mafic rocks and granit-
oids and with widespread volcanism. This phase culminated with
production of felsic, crustal-derived leucogranites in the foreland
(Gutiérrez-Alonso et al., 2011b). The delayed onset of magmatism
within the foreland is interpreted to reflect initial thickening of the
lithospheric mantle in the core of the orocline, forming an orogenic
root that subsequently became gravitationally unstable. Delamination
and sinking of the unstable root facilitated upwelling of hot astheno-
spheric mantle beneath the foreland core of the orocline, giving rise
to mantle derived mafic magmatism and melting of the lower crust.
The subsequent felsic melts are attributed to melting of the fertile
(pelite- and greywacke-rich) middle crust upon upwards migration
of the thermal anomaly above the high-standing asthenosphere
(Fernández-Suárez et al., 2000; Gutiérrez-Alonso et al., 2011b).

The Sm/Nd isotopic ratios from mantle-derived rocks from NW
Iberia provide additional evidence of mantle lithosphere involvement
during orocline development (Fig. 13e) (Ducea, 2011; Gutiérrez-
Alonso et al., 2011a). Pre-Variscan mantle-derived volcanic rocks
ian Arc. In situ paleomagnetic vectors for B component (red circles) and C component
cturally corrected and syn-tectonic corrected paleomagnetic site means and associated
ojection of B component magnetizations acquired after early D1 folding, but prior to
ction of C component magnetizations acquired during early D1 folding, and prior to
g a syn-tectonic acquisition. (C) Equal area stereonets of B (C component) component
correction brings paleomagnetic site means to a consistent inclination, but with a high
(gray triangle) as a consequence of significant vertical-axis rotation. (D) Paleomagnetic
hree-dimensional conical fold model for central core of Lagos de Valle syncline (after
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indicate that the mantle lithosphere in NW Iberia was emplaced, or
metasomatized, at about 1.0 Ga while post-Variscan mantle-derived
magmatic rocks yield neodymium model ages (TDM) of about
300 Ma. This dramatic change in mantle lithosphere age indicates
that orocline formation was coeval with removal of an older mantle
lithosphere that was subsequently replaced by a new, juvenile mantle
lithosphere. The mantle-derived melts that were formed during
orocline buckling were contaminated by crustal sources, and yield
model ages that span the inferred age of the underlying pre-
Variscan lithosphere and the new juvenile lithospheric mantle
(Gutiérrez-Alonso et al., 2011a). The resultant contamination indi-
cates that melting of the continental mantle lithosphere and lower
crust, and the subsequent mixing with upwelling asthenosphere, is
likely responsible for generating the new lithospheric mantle
(Fig. 13e) (Gutiérrez-Alonso et al., 2011a).

Overall, this protracted and voluminous phase of magmatism in NW
Iberia had a profound effect on the thermal structure of the upper crust.
Throughout the inner arc there is pervasive replacement and void-
filling dolomitization of Carboniferous limestones that are post-dated
by calcite cements (Gasparrini et al., 2003, 2006; Schneider et al.,
2008). Geochemical analysis indicates the dolomitizing fluids were
hypersaline and hydrothermal in nature, and field observations indicate
that the dolomitization occurred after D1 folding and faulting
(Gasparrini et al., 2006). Though most dolomitization fluid tempera-
tures are estimated in the 100 to 160 °C range, there are some reactions
related to talc deposits that formed at temperatures estimated to have
been as high as 400 °C (Tornos and Saphiro, 2000).

A rock magnetic and petrographic study of Paleozoic carbonates
from the Cantabrian–Asturian Arc was undertaken to further under-
stand the relationship between hydrothermal orogenic fluids and the
pervasive occurrence of remagnetizations during the late Paleozoic
Variscan orogeny in northern Spain (Weil and Van der Voo, 2002). As
indicated earlier, the Paleozoic carbonates from the Cantabrian–
Asturian Arc contain at least three ancient late Paleozoic magnetiza-
tions. Scanning Electron Microscopy (SEM) of magnetic extracts from
Cantabrian–Asturian Arc carbonates reveal abundant authigenic Fe-
oxides and ubiquitous evidence of fluid flow driven chemical reactions
that resulted in the formation of new Fe-oxides. Fluid reactions oc-
curred along cracks and grain boundaries and within void space, and
were genetically associated with Fe-rich clay and calcite–dolomite
transformation reactions, or as oxidation of Fe-sulfide framboids.
Together, the SEM observations and accompanying rock magnetic
experiments revealed that the three late Paleozoic remagnetizations
experienced by Cantabrian–Asturian Arc carbonates are chemical
remanent magnetizations facilitated by the presence of thermally acti-
vated fluids associated with late Paleozoic Variscan deformation and
oroclinal buckling (Tohver et al., 2008; Weil and Van der Voo, 2002).

In addition, abnormally high coal ranks are found throughout the
core of the Cantabrian Orocline, especially near faults that bound
syn-tectonic Stephanian basins in the Cantabrian–Asturian Arc
(Colmenero and Prado, 1993; Colmenero et al., 1996, 2008). Sedi-
mentological observations indicate that the high rank of these coals
could not have been reached at the inferred depth of burial unless
an extra heat source was involved (Colmenero et al., 2008). Heat
transfer likely occurred via fluids circulating through networks of
deep fractures and faults that partially accommodated orocline relat-
ed tangential shortening. Further evidence for hot fluids associated
with coal deposits is provided by the re-equilibration of fluid inclu-
sions in quartz veins in Stephanian continental coal bearing basins
(Ayllon et al., 2003; Frings, 2002) and the unusual occurrence of igne-
ous intrusions in some coal seams that converted coal into anthracite
(Colmenero and Prado, 1993; Knight, 1983).

Abundant hydrothermalmineralization characterizes the Cantabrian–
AsturianArc, including voluminous Zn–Pb deposits in the Picos de Europa
region (Gómez-Fernández et al., 2000), and ca. 270–290 Ma gold miner-
alization (Martín-Izard et al., 2000) that is spatially associatedwith zones
of low P–high T metamorphism (Arenas and Martínez-Catalán, 2003),
epizonal plutonism (ValverdeVaquero et al., 1999) and Stephanian volca-
nism (e.g., the 303±7 Ma Niao Andesite, Knight et al., 2000; Valverde
Vaquero et al., 1999). Field relationships have been used to argue that
goldmineralization is genetically linked to accommodation structures re-
lated to shortening in the inner arc and extension in the outer arc during
oroclinal buckling (Jahoda et al., 1990).

Other geological evidence for increased heat flow in the
Cantabrian Orocline includes: (i) late-Variscan hinterland uplift and
coeval normal faulting, similar to that described for the Gibraltar
Arc of southern Iberia during Late Miocene times (Duggen et al.,
2003); (ii) foreland-directed gravity-driven movement of large
thrusts (Martínez-Catalán et al., 2003); (iii) an increased flux of con-
tinental molassic sediments shed from the thermally elevated outer
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2011b).

41A.B. Weil et al. / Tectonophysics 582 (2013) 25–49
arc into the inner arc (Gutiérrez-Alonso et al., 2004; Pastor-Galán et
al., 2012a); (iv) the presence of intramontane basins that were rapid-
ly filled by Stephanian continental clastic sedimentary strata;
(v) widespread volcanic activity (Bruguier et al., 2003a,b; Capuzzo
et al., 2003); and (vi) thermal resetting of pre-existing metamorphic
fabrics (Dallmeyer et al., 1997). Additional evidence of increased heat
flow in the inner arc is indicated by the development of a
subhorizontal cleavage (Aller, 1981) and localized mineral metamor-
phic parageneses that contain pumpellyte and muscovite+chlorite+
chloritoid (Marín, 1997; Raven and van der Pluijm, 1986).

Dramatic changes in the thermal structure and thickness of the
Cantabrian Orocline lithosphere during oroclinal buckling likely
resulted in major topographic changes of the Earth's surface (Jiménez-
Munt and Platt, 2006). Synchronicity of topographic changes and
oroclinal buckling is provided by timing relationships of syn-tectonic
basin deposits (Colmenero et al., 1996, 2002, 2008; Corrales, 1971and
references therein). Uplift of the structurally thinned outer arc litho-
sphere by upwelling hot asthenosphere occurred coeval with subsi-
dence of the thickened inner arc lithospheric, and produced a regional
topographic slope from a high in the outer arc to a low in the inner
arc (Fig. 14). This orocline-induced topographic gradient is recorded
in thick conglomerate-rich continental deposits of Stephanian age pre-
served throughout the inner arc (Colmenero et al., 2008). Subsequent
foundering of the lithospheric root under the inner arc (Fig. 14b and
c) and its replacement by hotter, more buoyant, asthenosphericmantle,
resulted in a topographic inversion that is recorded by the unconformi-
ty between Lower Permian and Stephanian sediments in the region
(Martínez-García, 1991). These topographic changes agree with simple
isostatic balance models of Muñoz-Quijano and Gutiérrez-Alonso
(2007) and are in agreement with provenance shifts revealed by detri-
tal zircon analysis (Pastor-Galán et al., 2012a).

The above geologic, geochronologic and geochemical data con-
strains the genetic links between mantle replacement and orocline for-
mation in the Cantabrian Orocline; and consequently, the buckling of
the Cantabrian Orocline must have involved the whole lithosphere
(Gutiérrez-Alonso et al., 2004). Buckling of the entire lithosphere
about a vertical axis requires a folding mechanism similar to the longi-
tudinal tangential strain model of Ries and Shackleton (1976) (Fig. 12),
with shortening in the inner arc and arc parallel extension in the outer
arc accommodates oroclinal buckling at the lithospheric-scale. The tran-
sition from outer arc to inner arc in the Ibero-Armorican Arc is approx-
imately the boundary between the hinterland and the foreland in NW
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Iberia (Gutiérrez-Alonso et al., 2004). Geological and structural obser-
vations indicate that tangential arc-parallel shortening increases from
the transition zone toward the inner core of the arc (Julivert and
Marcos, 1973). This shortening was accommodated by formation of
conical folds with axial traces radial to arc curvature (Aller and
Gallastegui, 1995; Bastida et al., 1984; Gutiérrez-Alonso, 1992; Julivert
and Marcos, 1973; Pastor-Galán et al., 2012b). These conical folds
were caused by a decrease in shortening towards the outer arc and
are observed in the field as re-folded pre-existing thrusts and related
folds formed during Carboniferous E–W shortening (Gutiérrez-Alonso,
1992; Pastor-Galán et al., 2012b; Weil, 2006; Weil et al., 2000, 2012).
In addition, to superposed folding and thrust reactivation in the inner
arc, numerous strike-slip and reverse faults with complex movement
histories in the southern branch of the arc played an important role in
accommodating tangential shortening (Alonso et al., 2009; Marcos,
1968; Rodríguez Fernández andHeredia, 1988). These faults also played
an important role in the location and distribution of Stephanian
molassic basins (e.g., Alonso, 1987; Marcos, 1968; Nijman and Savage,
1989).

Arc-parallel stretching in the outer arc was accommodated by
strike-parallel ductile elongation,which led to a pervasive subhorizontal
stretching lineation in the deeper crustal levels (Brun and Burg, 1982;
Matte and Ribeiro, 1975) and strike-slip faulting in the shallower levels.
These strike-slip faults have displacements ranging from kilometers to
tens of kilometers and a conjugate pattern in which the dextral compo-
nent dominates over the sinistral component. Many of these faults have
associated releasing stepovers that acted as emplacement loci for
orocline related late-Variscan granitoids (e.g. Aranguren et al., 2003).
In general, thenumber of strike-slip faults decreases towards theneutral
surface where they are progressively replaced by low-grade dextral
shear zones.

In order to better understand the lithospheric-scale behavior and re-
sponse to oroclinal buckling, Pastor-Galán et al. (2012c) performed an-
alog modeling of orocline formation. The analog experiments were
performed with multiple rheologic layers of plasticine, and imaged
with 3D tomography.Model response indicated extension and thinning
of lithospheric mantle in the outer arc and accumulation of lithospheric
mantle in the core of the arc,which, depending on the initial lithospher-
ic mantle thickness, resembled the shape of a fold that was duplicated
by a fault-like structure. The observed model geometries obtained by
Pastor-Galán et al. (2012c) are in accordance with theoretical models
proposed by Ries and Shackleton (1976) and Gutiérrez-Alonso et al.
(2004). The observed generation of an overthickened lithosphericman-
tle root under the orocline core is fundamental to explaining the spatial
and temporal distribution of magmatic activity (Fernández-Suárez et
al., 2002a,b; Gutiérrez-Alonso et al., 2011b).

The above discussion emphasizes the kinematic observations, and
possible consequences of buckling a lithospheric orocline during the
final stages of Variscan orogenesis. What has not been directly
addressed, and which is not the focus of this review, is the geodynamic
mechanism(s) and tectonic scenario responsible for the buckling. Given
that the kinematic observations indicate a secondary origin for the
Cantabrian Orocline, the question remains—what caused the necessary
far-field stress change from compression normal to the orogenic belt to
sub-parallel to it? In light of the oroclinemodel, several ideas have been
proposed to date: (i) the self subduction of Pangea (Gutiérrez-Alonso et
al., 2008), (ii) buckling of a ribbon continent between Laurussia and
Gondwana during the final amalgamation of Pangea (Johnston and
Fig. 14. Schematic block diagram illustrating orocline development starting with (A) a
linear belt resulting from a Gondwana–Laurentia collision. (B) Oroclinal buckling
caused lithospheric stretching in the outer arc, with associated magmatism, and thick-
ening beneath the inner arc (modified from Gutiérrez-Alonso et al., 2004). (C) The final
stage of oroclinal buckling depicting delamination and collapse of thickened litho-
spheric root beneath the inner arc, replacement of sinking lithosphere by upwelling as-
thenospheric mantle, and associated magmatism in the inner and outer arc regions.
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Gutierrez-Alonso, 2010; Weil and Gutiérrez-Alonso, 2007; Weil et al.,
2010), and (iii) a continental-scale post-Variscan dextral shear zone
(Martínez-Catalán, 2011, 2012; Martínez-García, 2012). The first idea
takes into account the penecontemporaneous development of
Cantabrian Orocline with final amalgamation of the Pangea superconti-
nent. Within this larger paleogeographic framework it is possible to
produce dramatic stress-field changes at the regional scale. If one
takes into account the northward subduction of the Paleotethys spread-
ing ridge beneath Siberian Pangea before rifting of the Cimmerian rib-
bon continent, then Pangea would have to have begun consumption
of its own oceanic lithosphere. This scenario would result in shortening
near the apex of the northern Paleotethys subduction zone, and exten-
sion in the outer portions of the Pangea plate, which paleogeographical-
ly was the position of the Cantabrian Orocline. The inferred kinematic
consequences implied by this scenario explains the late dextral faulting
seen throughout the Cantabrian Orocline, penecontemporaneous Late
Carboniferous and Early Permian compression, and the large-scale ex-
tension in the outer zone of Pangea that ultimately resulted in creation
of radial rift zones, peripheral Pangea seas, and rift-to-drift of the Cim-
merian ribbon continent. The second, ribbon continentmodel, is also re-
lated to the larger paleogeographic configuration ofmajor crustal blocks
during final Pangea amalgamation. In this model the Cantabrian
Orocline is considered a buckled ribbon continent, similar to SAYBIA
of the Western North American Cordillera (Johnston, 2001, 2008),
which consisted of microcontinental blocks brought together prior to
or during closure of the Rheic Ocean. The inspiration for this model
comes from the requirement of bounding free-surfaces to allow for
the space considerations, amounts of translation and the geometric re-
strictions of buckling the lithosphere. The ribbon continent would have
been detached on its western (Rheic Ocean) and eastern (Paleotethys)
flanks, withmajor dextral strike-slip faulting between it and Gondwana
that accommodated oroclinal buckling. The ribbon continent was
probably pinned to a larger continental block on at least one edge to
allow buckling during tectonic transport, analogous to SAYBIA
(Johnston, 2001, 2008). This hypothesis assumes that the dramatic rota-
tions observed in the Western European Variscan Belt were accommo-
dated by major crustal detachments, many of which have yet to be
identified. The final dextral shear model is based on the presence of a
continental-scale dextral shear zone that reshaped the Variscan belt
throughwrenching along a diffuse plate-scale shear zone that produced
a heterogeneous distribution of deformation. In this model the large
shear zone, which would have run across present-day western Europe,
acted as an inter-continental transform fault that included a series of en
echelon shear zones, and that was kinematically connected to the con-
vergent boundaries of the Appalachians and the Urals (Martínez-
Catalán, 2011, 2012). The diverse geodynamic and tectonic implications
of these models highlight the remaining uncertainty in the larger tec-
tonics framework for the final stages of supercontinent amalgamation,
and highlight the need for more work to be done on the evolution and
development of the late Variscan oroclines into a global plate tectonic
perspective.

Fig. 15 is a synthesis of existing knowledge and work in progress
about the mechanisms and tectonic scenario that drove oroclinal
buckling in Iberia including the formation of the Cantabrian and
Central-Iberian oroclines. A change in the stress-field from a N–S to
an E–W regime (in present day coordinates, Fig 15A and B) during
Upper Pennsylvanian produced buckling of the Variscan orogen
near the apex of the recently amalgamated Pangea supercontinent.
This change in stress-field (simplified in the Pangea maps in Fig. 15)
would drive a disharmonic buckling of the orogen (Pastor-Galán,
2012) producing both Iberian oroclines with an “S shape” while
forming a greater and simple “C shape” in the outermost orocline, de-
scribed by the trace of the South-Portuguese and Ossa-Morena zones
beneath the Atlantic margin (Fig. 15).
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6. Conclusions

The Paleozoic Variscan orogeny was a protracted collisional event
that involved the dispersal and eventual amalgamation of multiple con-
tinents and micro-continents and culminated with the final amalgam-
ation of the Pangea supercontinent. The data review presented above
strongly supports a secondary oroclinal buckling model of an originally
near-linear convergent margin during the last stages of Variscan defor-
mation in the late Paleozoic. Closure of the Rheic Ocean between Gond-
wana and Laurussia resulted in E–W shortening (in present-day
coordinates) in the Carboniferous, which produced a near linear N–S
trending, east verging orogenic belt. Subsequent N–S shortening near
the Carboniferous–Permian boundary resulted in oroclinal buckling.

Petrologic, geologic, geochemical and geochronologic data all
point to penecontemporaneous magmatic and tectonothermal activi-
ty occurring synchronous with oroclinal buckling over a short 10 Ma
time window at the end of the Carboniferous. Temporal and spatial
relationships link these processes with thinning in the outer arc,
thickening in the inner arc, and ultimately foundering and delamina-
tion of the mantle lithosphere under western Europe. Such cause and
effect linkages help explain many previously enigmatic geologic
events related to a post-orogenic Variscan Europe.

The CantabrianOrocline, provides a unique location and opportunity
for understanding the processes that take place when a lithospheric-
scale orocline forms. The core of this arc in northern Spain has been
studied for over a century and frommultiple points of view, and the im-
mense amount of existing data offers an exceptional opportunity to
continue to develop ideas about the processes involved in orocline de-
velopment, which can ultimately be used to better understand other ac-
tive and ancient oroclines from around the world.
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